

Background – Bovine brucellosis

- Recent cases in cattle/domestic bison traced back to area elk
- Management strategies
 - Maintain cattle/elk separation

 hazing elk
 fencing haystacks
 elk feedgrounds
 - ↓ likelihood of exposed cattle experiencing abortions (RB51)
 - 3. ↓ disease prevalence in elk
 -T&S -low density feeding
 -elk vaccination (S19)

Overall Project

- Complete cost/benefit analysis for management strategies aimed at reducing brucellosis prevalence in southern GYA elk
 - 1. Understand how current elk <u>sero</u>prevalence translates to risk to cattle **at coarse scale**
 - 2. Model how various management strategies might decrease this risk
 - 3. Identify costs associated with these strategies
 - 4. Combine 1, 2 & 3 to understand costeffectiveness of each strategy

Methods - Data Collection

- Limited elk collar data \rightarrow mail survey
- Collect information on:
 - Cattle numbers/locations
 - Elk numbers/locations relative to cattle
- Distributed via National Agricultural Statistics Service (NASS)
 - Early February 2012
 - 486 surveys:
- 2 options for participation
- Privacy → scale of modeling

Methods - Survey Data

- 89 responses (50 usable)
- Assign cattle to locations on landscape

 Winter/spring (Jan-early May)
- Use elk presence/pseudoabsence to estimate resource selection functions (RSFs) for elk relative to cattle

- Land cover (NLCD)
- Elevation
 - Slope
 - Aspect
- Winter precipitation
- Proximity to:
 - Wolf/human predation pressure
 - Roads
 - Feedgrounds
 - Forest cover

• Current Risk:

- # years until cattle cases expected
 - # elk overlapping with cattle
 - % female
 - % pregnant
 - seroprevalence
 - probability of abortion (live birth)
- Compare to reported cases
- Model management strategies
 - Then recalculate risk
 - Benefit
 - Compare to costs
 - Focus on Pinedale EHU

Strategy	Assumptions	Annual Cost
Test and Slaughter	All 3 feedgrounds ↓ females ↓ population ↓ seroprevalence	\$409,111
S19 Vaccination	All 3 feedgrounds ↓seroprevalence	\$6,807
Low-Density Feeding	Fall and Muddy Creek ↓seroprevalence	\$4,156

- ↓ by 10% → 8%
- ↓ to 5%

Cost of an Outbreak

- Estimated at \$146,299 (Wilson, 2011)
- All costs in 2010 dollars
- Index herd: 400 bred cattle (368 successfully calve), 80 replacement heifers, 280 yearlings, and 23 bulls
- Castrating/spaying non-replacement yearlings
- Twelve-month quarantine
- Three whole-herd tests
- Does not consider changes to markets

Cost-Benefit Results				
Strategy	Reduce by 1%	Reduce by 5%	Reduce by 10%	Reduce to 5%
Test and Slaughter	-\$408,552	-\$407,496	-\$406,296	-\$406,110
S19 Vaccination	-\$6,682	-\$6,248	-\$5,630	-\$5,462
Low- Density Feeding	-\$4,031	-\$3,681	-\$3,074	-\$2,913

Cost-Benefit Results				
Strategy	Reduce by 1%	Reduce by 5%	Reduce by 10%	Reduce to 5%
Test and Slaughter	-\$408,552	-\$407,496	-\$406,296	-\$406,110
S19 Vaccination	-\$6,682	-\$6,248	-\$5,630	-\$5,462
Low- Density Feeding	-\$4,031	-\$3,681	-\$3,074	-\$2,913

Costs of an outbreak necessary to break even				
Strategy	Reduce by 1%	Reduce by 5%	Reduce by 10%	Reduce to 5%
Test and Slaughter	\$107.1M	\$37.1M	\$21.3M	\$19.9M
S19 Vaccination	\$8.0M	\$1.8M	\$846K	\$740K
Low- Density Feeding	\$4.9M	\$1.3M	\$562K	\$489K

Challenges

- Small sample size (18%, 10% usable)
- Poor representation of small producers
 - Impossibility of follow-up
 - Improvement via alternative sampling strategies
 - Weighting of responses
- Lack of adequate ground-truthing data
 - Other research groups working on fine-scale RSFs to identify overlap
 - Individual producer level

Years Until Expected Cattle Case				
Elk Herd Unit	True Cases Since 1989 ¹	Minimum # Years to True Case ¹	Modeled Median # Years to Expected Case	
Afton	0	0	9.0	
Fall Creek	0	0	17.14	
Hoback	0	0	4.7	
Pinedale	1	23	6.96	
Piney	1	23	4.09	
South Rock Springs	0	0	554,011.0	
South Wind River	0	0	95.0	
Steamboat	0	0	719	
Upper Green River	0	0	16.09	
West Green River	0	0	32.5	

Costs of Management Strategies: Assumptions

- Test-and slaughter \$346,147
 - On all 3 feedgrounds, annually
 - Assume constant variable costs
- Vaccination \$7,674
 - On all three feedgrounds, annually
- Low-Density Feeding \$1,358
 - Assume applied:
 - On 2 feedgrounds (not Scab Creek)
 - As additional time spent by feeder

Modeling

- Small size of cattle winter feeding areas → contact with infectious materials inevitable
- Management implications same if 1 or more cattle test positive
- 1/(Current Risk) = # of years until cattle case expected
 - Pinedale EHU

~31 years until cattle case (Compare to 1 case since 1987)

Test and Slaughter

- Basic premise:
 - Capture elk on all 3 feedgrounds, test adult females, remove if positive
- Assumptions for modeling:
 - All 3 feedgrounds receive management
 - Management "applied" via:
 - \downarrow female proportion
 - \downarrow population
 - ↓ seroprevalence

Low-Density Feeding

- Basic premise:
 - Alter spacing of feed to avoid mass congregation of elk
- Assumptions for modeling:
 - Two feedgrounds receive management (not feasible on Scab Creek)
 - Management "applied" via:
 - \downarrow seroprevalence

Costs of Management Strategies: Assumptions

- Test-and slaughter \$346,147
 - On all 3 feedgrounds, annually
 - Assume constant variable costs
 - Vaccination \$7,674
 - On all three feedgrounds, annually
- Low-Density Feeding \$1,358
 - Assume applied:
 - On 2 feedgrounds (not Scab Creek)
 - As additional time spent by feeder

Further Steps...

- Model additional management strategies
 - Habitat improvements
 - Elk contraception
 - Fencing elk "out"
- Consider summer risk as well
 - Late elk abortion/infectious live birth
 - Cattle exposure on summer grazing allotments
 - Smaller role than winter risk
- Ground-truth models
 - Collars?
 - Intensive producer surveys?

